Saturday, October 21, 2017

No turning back now...

Got my LocTite, and had a few free hours tonight, so I finished the crankshaft buildup by torquing the connecting rods to spec. Then I gooped up all of the head studs with Permatex Aviation 3H and installed those in the case halves. 




I got everything covered in moly grease, dropped in the cam lifters, crankshaft, camshaft, cam plug, and stud seals, then put the case together and torqued everything down just as if I was sealing up the case for real. 



I checked free rotation the whole way through, and man, is it nice and smooth. All the gears mesh up just fine, no weird noises or rough spots. With that, there was nothing left to do but tear it all down so I could add grease and sealer and put it back together one final time!



Got moly grease on the cam lifters, which in my case are hydraulic. Using moly on them really helped them stay in place; a big plus on aircooled VWs, since they want to fall out when you try to put the case halves together. Dropped in the crank and camshaft, then gooped up the cam plug with 3H and stuck that in its place. (Apparently this picture was actually before the cam plug was installed.)


Next came the excitement - spread 3H on the other case half, mate them together, and put all the nuts and bolts in.



I gave it one more free rotation check once everything was torqued and ready to leave, and sure enough - smooth as you please. I'm gonna have to find something else to complain about now that the crankshaft is doing what it's supposed to do. One final thing I did before I sealed the case up was check my end play at the flywheel. I've got three shims in between the first bearing and the crankshaft to act as a thrust bearing, and the remaining end play is shown below. I think I'm supposed to have it at around 0.005", but I'll have to check on that. I'll order a shim to put between the flywheel and the first bearing and call it good.


Wednesday, October 18, 2017

Crank Buildup... Again.


So, when I said earlier that the case was "torqued to spec" and that the crankshaft "didn't bind...." Turns out I lied. I didn't have two nuts on... and it turns out that those two little nuts caused a big problem.  Once I had *all* of the hardware on and torqued, the crankshaft stuck... pretty bad! I ended up doing a lot of digging, and it turns out that the piece that used to be the prop hub, which still provides a bearing surface, was the problem.

I started by trying different clocking orientations - pulling the hub, heating it up, rotating it slightly, and putting it back on - and I did find one position that was very close to perfect. However, it still had a sticking spot, and when I put a dial indicator on it, I could see why - while the hub was only out of concentric by about .0003, there was a single spot, like a lobe, that was more than a thousandth of an inch high. Now, I have a lathe, but I'm not confident enough in my abilities to do serious engine work. Nevertheless, I'm not willing to pay a machine shop another hundred to polish a single bearing surface into spec. 

So I chucked the crank into the lathe and set up to knock the lobe down with some emery cloth held in my tool holder, so I could just hit the high spot.


Once I thought I'd gotten close, I used some medium and then fine emery cloth to get all of the tooling marks off. Then I pulled the whole thing off the lathe and assembled and torqued the engine to spec again.



..........??????!!!!!!!!!!!!!!!!!!!!!!!

Rotates freely. Smooth as can be. I was pretty excited! It's still got contact across the whole bearing, too, so I didn't just turn it down so far it doesn't touch anything. (To give you an idea, I think I took about half a thou off of the bearing before I started with the emery cloth... so really, very long process for a very small amount of material.)

I cleaned the crankshaft up, re-lubed the connecting rods, and started to assemble them. Unfortunately, I can't find my LocTite to save my life. I think I left it in PA when I used it on my landing gear.


Yes, the connecting rods are pointing in wrong directions - that's just so the nuts are easy to get to. I couldn't just leave it all like that, so I went ahead and worked on setting up the distributor assembly. Because of the type of distributor I have, I don't think the orientation of the distributor drive shaft matters in the least. However, just in case I'm wrong, I oriented everything the way the book says to, marked it with red dykem, and put a holding screw in place to keep the distributor aligned correctly. I've gotta get a couple of new screws for that, though... these two are looking pretty buggered up.


I intend to assemble the crankshaft, then install it and the camshaft into the case, along with the correct end play shims on the flywheel, torque the case to spec and check free rotation one more time before the final assembly. If it all checks out, then I'll install the lifters, cam plug, and whatever else I'm forgetting, then put sealant on the case and bolt it all up for good. There's still a lot left to do, but this feels like a big turning point in this whole process.

Monday, October 16, 2017

Landing Gear (part 2)

(Continued from Landing Gear - Part One)

My landing gear legs finally showed up, so I took advantage of the last of the warm weather to get some fiberglassing done. I was pretty excited, since the plane has been sitting on jack stands for quite some time now, and I'm always nervous about it falling off when I'm getting in and out to make airplane noises.

Once I had the gear planed to thickness and edges chamfered, (ScotchPly is really hard on planer blades!) I wrapped a couple of layers of bi-directional cloth infused with epoxy around them, as per the instructions. After that cured, I hot-glued a couple of straws to the backs as a housing for the brake lines.


I mixed up some really thick micro and filled in all around the straws to help the next layers of fiberglass lay smoother.



Once that cured, I sanded it all smooth and wrapped the next layers of fiberglass cloth and epoxy around the back. Nothing to it, really.






The next step was to use some more micro and just squeegee it over the sides of the leg, so I could sand them nice and smooth (without adding much extra weight.) I also used a high-speed rotary tool to open up holes to the straws and sanded everything smooth.

Before I got to the fiberglassing stage, I had gotten the brackets all drilled and prepped. Because of the shape of the brackets, I had to get a little creative with the hole placement for the axles.


The next step was a little scary - the geometry of the axles and landing gear is sort of important, and I only got one shot at drilling holes into the fiberglass legs. I took my time and re-verified a couple times, and I still ended up with one axle not quite pointing the right direction - but I can machine a nice aluminum shim to fix it, since it's off by only a couple degrees. 

Once my holes were all drilled, I mixed up some flox, spread it on the brackets, and bolted the legs to the brackets for good.



While I waited for that to cure, I got my new rims and tires out, packed the bearings with grease, assembled them onto the axles, and the axles onto the brackets. It's starting to look serious now!


As soon as the epoxy showed the slightest indication of curing, I couldn't help but drag the whole assembly out to the garage and bolt it onto the plane. It's not a great picture, and there's a ton of crap in and around the plane, but it still looks a heck of a lot better with landing gear than it did on jack stands!


I haven't been idle with the engine - just frustrated, and lots of work for very slow progress. It was really good to get this out of the way, just to feel like i'm getting *something* done.

Sunday, August 27, 2017

Fit so nice, I made it twice....

Actually, it was the wrong material, so I kicked myself a few times and bought a new flywheel. This time, a *forged* flywheel, not a *cast* flywheel. Had I the sense to do more research ahead of time, I'd have only made it once. Nonetheless, the new version is around 300% *less* likely to break apart during flight.

That's version 2. Same dimensions, but machines a lot more like 4130 than the first one.


In this blurry picture I'm pointing out the locating step for the flexplate. That way I know it's concentric. I did the same on the inside for the prop extension:


Now that this is finished, I was able to start test assembling the crankcase. First, the connecting rods on the crankshaft:


Drop the crank assembly into the case and add some nuts, torqued to spec:


It still rotated freely after it was torqued, so that was a good sign. No rubbing or clearance issues so far. The next step was to add the head studs and check the piston deck height. I painted my head studs to help avoid corrosion:


And then I added them to the pile.


I added a cylinder and piston, and started taking measurements. I used a .030" shim under the cylinder, which is how the engine came to me. I set up my dial indicator and rotated the crank to TDC for that cylinder.


Zero'd up the dial indicator (though the photo makes it look off);


Using a piece of steel rod I had laying around as a straightedge, I measure deck clearance + rod width at 0.428" or so.


The rod I used measured 0.314", which means my clearance distance is 0.114". That's a lot more than I want! VW specs are between 0.040" and 0.080". I went back and checked, and the old pistons are the same as the new ones, and the old cylinders were within a couple thousandths of the new ones. That means that this engine was assembled wildly out of spec.... which shouldn't be a surprise, but it was. And means more work; removing the shims brings me down to 0.084", which is out of spec (and 0.024" more than I really want.) That means I'll have to chuck each cylinder up on the lathe and turn it down to what I want. 

Unless...

...unless the heads are also anomalies, and have a much smaller chamber than normal heads, in which case the cylinders need to be extra long.... Bottom line, the new priority is get the heads reconditioned and blueprinted so I know what kind of setup I need.

There has been nothing straightforward about this engine. Armed with the knowledge I've gained from this process, I believe the next engine I assemble will be from brand new parts that I know the details on.

Monday, August 7, 2017

...And flywheel solutions!

I removed all the dowel pins from the crankshaft, which wasn't super difficult this time around... I think my holes are a light press fit, rather than the super-tight holes that were there originally. I'm not sure if that'll cause problems down the road or not; they are still a press fit, so load should (theoretically?) be transferred just as effectively.

The flywheel face on the crankshaft seemed to have zero runout when sitting in the crankcase, but there were a few problems with how I was taking that measurement that could have absorbed imperfections... so I decided to throw it at the lathe and check runout by painting the face with red dykem and scraping a tool along the face. The goal was to avoid removing any material, just rub the dykem off, and see if it was a gnarly edge on a dowel hole that was causing issues, or if the face itself was not perpendicular to the axis of rotation. I thought I took a picture of the result, but apparently this was another instance where my phone shut off instead of taking a picture... that's been happening a lot recently.

Anyways, the dykem was scraped off of about half the face, and the other half the dykem was still there; it made almost a perfect half circle of red and a half circle of steel. Now, the crankshaft was out about .0005 on each end, and I failed to document whether it was out the same direction at the same point in rotation; so when I did the math, I had to assume worst-case of the crankshaft being out a full thousandth of an inch. Even so, the pattern was much too extreme to blame it on a misalignment of that magnitude, so I turned a couple thousandths off the entire face. When I re-attached the flywheel, it was only out about 1 thousandth of an inch as opposed to the 8 I had before, so I put the dowels back in and put the flywheel back on. I put the whole thing on the lathe as an assembly, because I have to do a little more work on the flywheel.

Now to the part I have pictures of! The final flywheel is going to be two parts riveted together. The inside part will be turned from the original flywheel, and the outside is from a much lighter flexplate (which basically just positions the ring gear and transfers the load from the starter.) I cut the inside out of the flexplate on a CNC mill at work, since it was too big to turn on the lathe.



I also cut the outside off of the flywheel on the mill, but left it oversize so I could finish it on the lathe.




I could have programmed the mill to cut a circle, but I wanted to use a rotary table to get a true circle on the flexplate, since I can't touch that up on the lathe. Once I was set up to do that, it was just easier to do the same with the flywheel.

Once the flywheel and crankshaft assembly were on the lathe together, I started working towards the final shape. There's a step on the outside of the flywheel that needed to be turned flat with the rest of the face, and then a new step needed to be cut out from 5" diameter outwards to accept the flexplate. I've got the whole thing turned flat, and I used some red dykem to help me visualize where that 5" diameter will be.




It's been a little tough to find time to work on this stuff, but I think I see the light at the end of the tunnel. I have a few more parts on order, and once they get here I should be able to begin the reassembly process... which should be a pretty quick process, given how much documenting and adjusting and tweaking I've done *before* started to put it all together.

Saturday, July 15, 2017

Lathes + Flywheel Troubles

Having a metal lathe, even a small one, is a fantastic way to avoid paying a large amount of money for a small amount of work. I started by chucking up the crankshaft and adjusting until I had less than a thou of runout. That's still too much for bearing work, but I'm not doing bearing work. I put a 45º chamfer on the flywheel mating face, and knocked the burrs off of the pulley hub mating portion of the shaft. A little polishing to make sure the pulley hub slips on, and we're off to the races. The pulley hub was heated to ~400º F, the crank cooled to ~10º F. I still had to use some persuasion with a hammer to seat it fully, but she's on there now.


The two aluminum rings are the replacement seal housing, complete with seal installed. I must've walked through the assembly process a dozen times to make sure I put the seal housing on the correct way, and I still checked it half a dozen times afterwards. The red material is a cut up silicon baking sheet to help keep the rubber on the seal from melting/losing its elasticity.


After I turned the chamfer on the flywheel end, I re-installed the 4 dowel pins. The bottom pin in the picture is larger than the rest, allowing me to index the flywheel. My plan is to mark TDC on the flywheel, since it can only line up one way, and with very tight tolerances.


When I attach the flywheel and snug up the nut, I still end up with about .008" of runout at the edge of the flywheel. Not a lot, but more than I'm willing to put this together with. I used some more PlastiGage between the flywheel and the crank surface to make sure I was fully seating the flywheel... sure enough, I wasn't, and the place where I wasn't touching the crankshaft is the same angle where the flywheel is furthest out. There are four factors at play here; the crankshaft face, the dowel pins, the flywheel face, and the flywheel holes for the dowels. The crankshaft face is most likely true, since that's how it was run successfully before, and my PlastiGage test seems to confirm it. I proved that the flywheel face was true by using a rotary table and a dial indicator and getting less than a thousandth of runout. I think that leaves the dowels. How did that happen?

It happened pretty simply - I used the flywheel to drill the dowel holes. Normally, this would've been the best way to go about it. However, because of that radius on the flywheel that I chamfered the crank to match, the flywheel wasn't sitting quite right on the crankshaft, which means the dowels are *slightly* cocked to one side, which means they *want* to pull the flywheel that way.

So my next step is to torque the flywheel to spec, which is some ridiculous number above 200 ft/lbs, and see if that fixes the problem. If not, I may have to get creative. On a positive note, the only bit of clearancing that I still need to do involves grinding a little material off one of the connecting rods. Once that's complete, I can start setting things out for assembly. I do, however, need to get this flywheel thing straightened out before I can move forward.

Monday, July 3, 2017

Dowels are hard, PlastiGauge is soft.

It took a lot of work, but I got all four dowel pins out without damaging the crank. The two I put in came out easily enough with some vise grips and a bit of twisting and pulling... the two that were in from before were another story entirely. Nothing would touch them, including the hardened jaws of a *nice* set of vise grips. (Those are no longer a nice set of vise grips, by the way.) In the end, I discovered why machinists have drill bit sets up to half an inch with just a couple thou of difference all the way up...

...It's because hardened steel pins can't be drilled out with big steps between bit sizes! It took me a solid hour and a half to drill each pin out. However, both of them twisted out right before I broke through the wall of the pin (after a couple good taps with a hammer on the side of the pin to break it up a bit.)

I checked the face on a dial indicator, and at most it's out a single thousandth at the edge. That's about an inch from center, which means that might account for about 5 thousandths at the edge of the flywheel.... which means something else is amiss. I checked the flywheel by placing it on an indexer, supported by placing a tight tolerance block between the indexer and the mating face on the flywheel. Spin the indexer, check for runout.... I forget what I got, but it was insignificant (which is why I forgot it. :D) I was pretty puzzled at that point. However, since the pins were out of the crank, I was able to rotate the flywheel on the crank. How does that help us? Well, before I pulled the dowels, I'd marked on the flywheel exactly *where* the runout was, as well as *how much.* When I put the flywheel back on after the pins were out, I lined it up pretty close to where it was originally... and got pretty much the same results. (I didn't use an indicator, as I was less interested in how much it was out as *where* it was out.... and it was wobbling pretty obviously.) Ok, repeatability, that's good. So I rotated the flywheel 180 degrees and tried again. If it was the flywheel, that should've made no difference; the marks on the flywheel still should have been correct. If it was the crank face that was out, then the marks on the flywheel should have been exactly (or close to) opposite what the flywheel was showing the second time around.

So what did I find? Well.... actually, it was about 70 degrees off from where it was originally. I didn't know what to make of that, until I started taking careful measurements of everything. What I found was that the flywheel had a bit of a radius where it mated with the crankshaft, and the crankshaft did not have that radius. I think what's happening is that there's a tiny bit of play between the *side walls* of the flywheel and the crankshaft, and the radius causes the face of the flywheel to be tighter than the crankshaft can fit into. Add the radius and a little bit of slop and, unless the radius on the flywheel and the edge on the crankshaft are perfectly uniform and smooth, odds are the flywheel just isn't seating fully and is staying at a bit of an angle. The fix is simple; just cut a matching radius (or, much easier, a slightly relieved chamfer) on the crankshaft. The side walls and dowel pins will still locate the flywheel, and the face where the two meet won't lose much area. I like that idea better than cutting a sharp corner into the flywheel. 

I should mention, the reason that this is an easy fix is because I recently picked up a Jet 9x20 metal lathe. Just as soon as I finish getting that set up in the basement, this will be a pretty straightforward job. I'll be spending my evenings this week cleaning it up and, as soon as my insert tooling shows up next week, I'll be making chips and breaking tools. Also touching up airplane engine parts. 

I also got my oil galley plugs straked in place so they can't rotate out. I found one of my case savers was loose, so I used some red LocTite, filed a notch in it, and straked that in place as well. 

The last thing I wanted to do today was check my connecting rod bearing clearance. If you've never heard of PlastiGauge, you're in good company; none of the auto parts stores I went to had ever heard of it either. I ended up at a local NAPA, a company I spent 6 years working as a counterman for, and gave the kid at the counter the part number I remembered as being correct. "Huh, it says we've got 12 in stock. What is it again?" It comes from the warehouse packaged as a dozen, so I guess it shouldn't surprise me he'd never heard of it; he'd never sold any of it. Anyways, PlastiGauge is a kind of plastic-y wax string that's very precisely formed. A strip of it is placed between two surfaces you want to check clearance on, and those two surfaces are brought together however they will be brought together during final assembly. In this case, those surfaces are the connecting rods with bearings installed, and the crankshaft. Blurry picture, but the green little stripe in the middle of the white grease is the PlastiGauge before the con rod is tightened....



...And after:


The lighting was pretty awful. However, I can tell you that the strip of green that's *not* a weird reflection is the one above the .0015" mark. Basically, that wax gets squished to different widths based on how much clearance is available, and the package the wax comes in has a gauge on the side to check it with. All four journals had *exactly* the same width as the .0015" mark, and they were all very even stripes from one side of the journal to the other. (If the journals or the con rods had any taper, that would've shown up as a tapered stripe.) The specs for this engine are 0.0008-0.0025, so I'm smack in the middle of where I want to be. Any wear is going to cause that clearance to open up, and I've got a solid thousandth of an inch for it to open up before I make it out of the range I want to be in.

I'll putz around with little things here and there, but mainly I'll be setting up that lathe and taking some test cuts to get to know it. I've got to do my touch up on the crankshaft, and a couple other things, and then I can start test assembling everything.